Jump to content
Corsair Community

H100i v2 Temperaturen auf Intel Core i7 6700K


Alperen62002

Recommended Posts

Hallo,

Ich habe auch ein H100i V2 mit i7 6700k Standardtakt. Als MAinboard habe ich einen Asus Z170 Sabertooth Mark 1. Ich habe die CPU mit Prime95 und Asus Realbench laufen lassen.(Siehe Bilder) Meine Frage ist warum die Temps mit einer H100i v2 so hoch sind. (Vor allem beim Prime95 über 80 Grad) Oder ist es normal?

Wenn ich aber im BIOS bei dem CPU Voltage auf Adaptive Mode umstelle ist es noch nicht mal 60 Grad was ja logisch ist.

Beim Adaptive Mode ist die CPU Voltage 1.200 V.

Beim AUTO Mode ist die CPU Voltage 1.312 V.

Als WLP habe ich die von Corsair, IC DIAMOND und zuletzt Noctua NT-H1 benutzt.

Die Kühlleistung ist fürs Normale ausreichend aber für 4.5Ghz nicht. Ich will ja übertakten was wegen der Kühlleistung nicht geht!

Könnt ihr bitte die Bilder euch mal anschauen und eure Erfahrungen mit mir teilen?

2028781856_AdaptiveModeIDLE.thumb.JPG.3384ecbf608c177cfa9e378458bd12a6.JPG

1109510392_AdaptiveModeLAST.thumb.JPG.77d90cb8f0f89038c603c9caae06c53f.JPG

1918138127_AutoModeIDLE.thumb.JPG.3495808073bcc6db553b90cb4bfe7743.JPG

1469172922_AutoModeLASTPrime95.thumb.JPG.027bdc5b24a26d61e80cc11b576fc636.JPG

930073294_AutoModeLASTRealbench.thumb.JPG.213b65a55aeab72d595cebcb94414049.JPG

Link to comment
Share on other sites

Für den 6700k würde ich ab 4,5 GHZ 1.28 Volt ,4.6 GHZ 1.30 Volt, 4,7 GHZ 1.32 usw und bitte manuelle Volt einstellen und im CPU Load Line Calibration 5 bzw 6 einstellen

 

achso Prime 95 und der realbench von asus da hat man immer so hohe temps,weil der Prozzi ausgelastet werden und ich würde ab 100° gedanken machen

 

80° und co sind noch human mein 6700k lief mal mit 110 ° bei 5GHZ

Link to comment
Share on other sites

Prime 95 beansprucht den CPU extrem, also alle Kerne auf 100%, das schaft kaum ein Spiel oder Anwendungsprogramm. Somit ja die Temperaturen sind nun mal hoch, weil da wird das letzte abgefordert.

Prime 95 stellt somit die maximale Temperatur dar die erreicht werden kann. Mehr geht nicht.

Bei mir sinds aktuell 31°C draußen, somit klar wird mein CPU auch wärmer, weil auch die Zimmertemperatur steigt. Ich hab keine Zimmerkühlung.

Bei 80°C würde ich mir noch keine Gedanken machen, bei 90°C können wir gerne drüber reden.

Diese Werte wirst du mit jeder anderen AIO mit der gleichen Radiatorfläche erzielen, die Unterscheiden sich alle nicht sonderlich in den Temperaturen.

 

MfG.

 

Pb

Link to comment
Share on other sites

Ich bedanke mich für die schnelle Antworten. Ich hatte früher einen i7 3820. Deswegen wußte ich das nicht dass so hohe Temps normal sind. Aber was mich überrasscht ist die Aussage von Crash-Over:

-"Für den 6700k würde ich ab 4,5 GHZ 1.28 Volt ,4.6 GHZ 1.30 Volt, 4,7 GHZ 1.32 usw" uunnnd Es funnktioniert. :D:

:evil:ABER

Warum ASUS so hohe Spannungen einstellt, das ist hier die Frage. :bigeyes:

Wenn ich die gespeicherten OC Einstellungen von Asus lade ist 4.5 ghz bei 1.44V erreichbar. :bigeyes:Natürlich sind die Temps dementsprechend über 90°C

Ich verstehe es nicht warum Sie sowas im BIOS programmieren wenn es zu hohen Temps und damit folgendem gewisse Instabilität des Systems führt!:mad:

Ich benutzte früher Rampage IV X79 mit i7 3820 von ASUS. Ich hatte große Erwartungen von i7 6700k und Z170. Aber langsam bin ich wirklich enttäuscht.

Ich hatte fast Corsair die Schuld in die Schuhe geschoben.

Link to comment
Share on other sites

Das kannste nicht mit einander vergleichen der i7 3820 ist sockel 2011, vergleichen kannste immer nur cpus vom gleichen sockel, ansonsten hinkt das gewaltig.

Solange du das Board übertakten lässt oder die Software, hast du meistens eine höhere Spannung als du brauchst. Das ist in der Regel für die Nutzer vorgesehen die wenig Ahnung haben und lieber nur auf einen Kopf drücken.

 

Somit test die vorgeschlagenen Spannung und dann wirste auch bessere Temperaturen bekommen.

Es ist normal das von Haus aus mehr Spannung als nötig genommen werden, da jeder CPU und jedes Board immer etwas anders ticken und somit ein Betrieb garantiert wird. Das heißt nicht das die Spannung ideal ist, aber wer übertakten will sollte ich mit dem Thema auch beschäftigen. Du weisst ja auch, nur weil du übertakten kannst, fällt das nicht mehr unter die Garantie von Intel. Geht was kaputt, selbst schuld.

 

MfG.

 

Pb

 

p.s. Sockel 2011(-3) ist für Nutzer die viel CPU Leistung brauchen, nichts für nur Spieler, während der Sockel 1151 Mainstream ist. Somit ist doch klar, das du nicht soviel Leistung mehr bekommst. Zudem hat Intel in den vergangen Jahren vom i5 2500k zum i5 6600k ca. 50% an Leistung zulegt. i7 3820 ist von 2012 das heißt soviel mehr Leistung haste nicht bekommen

Link to comment
Share on other sites

Ganz einfach asus und co gehen davon aus das nicht jeder cpu gleich ist der eine braucht mehr als der andere deswegen gehen die auf Sicherheit

 

Ehrlich gesagt die einstellung vom Board hab ich noch nie geladen oder getestet

 

warum überracht dich jetzt meine aussage darüber, wegen den spannungen ?????? Hast du getestet

Link to comment
Share on other sites

@Plumbumm

Ja da hast du Recht. Die Sockel kann man nicht miteinander vergleichen. Aber wenn was NEU ist, vergleicht man das immer mit dem Alten. Isso. Ich habe die vorgeschlagenen Spannungen getestet. Es hat wunderbar funktioniert. Du schreibst das höhere Spannungen von Haus aus normal sind. Wann bist du mit dem Spannung runtergegangen und gleichzeitig Multiplikator erhöht? Das ist nicht normal.

Was die Garantie angeht:

Eine Übertaktung wird Intel schlecht nachweißen können. Außer man ist so Blöd un schreibt im Fragebogen rein das man übertaktet hat

Solange du nicht Köpfst, bekommst du bei Intel in der Regel immer einen RMA durch. Sogar recht schnell. Wenn du ein CPU mit boxed Kühler kaufst, nutzt du einen anderen Kühler als den Boxed Kühler, Selbst dann verfällt schon die Garantie!

Außerdem verkauft Intel spezielle "Garantien" für -X und -K Prozessoeren auch Purchase A Plan genannt. http://click.intel.com/tuningplan/purchase-a-plan

Ich bedanke mich trotzdem für die Info

P.S.> Meine Erwartung war nicht nur Leistung sondern auch Effizienz, Support, Features (sowie NVME, SATAe usw). Da die X99 Platform zu tief in die Tasche griff und auch ein Stromfresser war habe ich mich für Skylake entschieden. Lass das meine Sache sein ob es sich gelohnt hat oder nicht.

@Crash-Over

Ich bedanke mich sehr für deine Vorschläge. Hier und da musste ich bisschen Spannung erhöhen aber 4.5 Ghz 1.29V hat gepasst. Cpu wird nicht wärmer als 65°C. Was mich überrascht hat, war dass ich mit dem Spannung runtergehen musste und gleichzeitig Multiplikator erhöhte. Aber nochmals vielen Dank.

Link to comment
Share on other sites

@Plumbumm

Ja da hast du Recht. Die Sockel kann man nicht miteinander vergleichen. Aber wenn was NEU ist, vergleicht man das immer mit dem Alten. Isso. Ich habe die vorgeschlagenen Spannungen getestet. Es hat wunderbar funktioniert. Du schreibst das höhere Spannungen von Haus aus normal sind. Wann bist du mit dem Spannung runtergegangen und gleichzeitig Multiplikator erhöht? Das ist nicht normal.

Was die Garantie angeht:

Eine Übertaktung wird Intel schlecht nachweißen können. Außer man ist so Blöd un schreibt im Fragebogen rein das man übertaktet hat

Solange du nicht Köpfst, bekommst du bei Intel in der Regel immer einen RMA durch. Sogar recht schnell. Wenn du ein CPU mit boxed Kühler kaufst, nutzt du einen anderen Kühler als den Boxed Kühler, Selbst dann verfällt schon die Garantie!

Außerdem verkauft Intel spezielle "Garantien" für -X und -K Prozessoeren auch Purchase A Plan genannt. http://click.intel.com/tuningplan/purchase-a-plan

Ich bedanke mich trotzdem für die Info

P.S.> Meine Erwartung war nicht nur Leistung sondern auch Effizienz, Support, Features (sowie NVME, SATAe usw). Da die X99 Platform zu tief in die Tasche griff und auch ein Stromfresser war habe ich mich für Skylake entschieden. Lass das meine Sache sein ob es sich gelohnt hat oder nicht.

@Crash-Over

Ich bedanke mich sehr für deine Vorschläge. Hier und da musste ich bisschen Spannung erhöhen aber 4.5 Ghz 1.29V hat gepasst. Cpu wird nicht wärmer als 65°C. Was mich überrascht hat, war dass ich mit dem Spannung runtergehen musste und gleichzeitig Multiplikator erhöhte. Aber nochmals vielen Dank.

 

Danke für die Info mit dem purchase-a-plan.

Die Aussage für x99 bezüglich Stromfresser muss relativ ruhig gehalten werden. Es ist nicht zu verachten, dass zwar ein um 10W höherer TDP vorhanden ist, wie bei Haswell-E, aber dass es gegen Skylake nicht konkurrenzieren kann, liegt auf der Hand. Jedoch sollte nicht verachtet werden, dass bei x99 auch mehr Kerne von Grundauf vorhanden sind.

Link to comment
Share on other sites

Phal aber das ist rausgeschmissenes geld nach meiner meinung sowas gibts auch bei asus ne Garantie dass das Board Oc Potenzial hat

 

Es ist nichts anderes als vor selektierten chip zu bekommen.die werden bei intel überprüft und zb bei caseking verkauft siehe zb 6700k 4,8 ghz. https://www.caseking.de/intel-core-i7-6700k-4-0-ghz-skylake-pretested-4-8-ghz-tray-hpit-262.html.

 

 

Ist das gleiche auch wie bei nvidia oder amd manche Hersteller bekommen vorselektierten Chip und daraus werden zb die high end karten ala kingpin usw daraus .Die Leak Ströme sind dann etwas kleiner als bei andere chips und da durch hast du auch höheres oc potenzial bei kleinere spannungen und dadurch resultiert daraus dass man paar crad einsparen kann

 

Achso ist das gleiche wie bei Rams

Link to comment
Share on other sites

@Alperen62002

 

Hab ich bisher nicht, aber ich weiß das dem so ist. Meine beiden AMD übertakten bringt nichts, also der Leistungszuwachs steht für mich in keinem Verhältnis zur Hitzeentwicklung. Soviel mehr Performance bekomme ich auch nicht, auch wenn ich die Grafikeinheit (A10-7850K) mit Standard 720mhz auf 900mhz hoch schraube.

Vorallendingen brauch ich es auch nicht. Da kann ich besser ne günstige Grafikkarte kaufen, da krieg ich mehr FPS als wenn ich die Grafikeinheit übertakte.

 

Klar kannste die von der Leistung vergleichen nur die Hitzeentwicklung hinkt halt, am ehesten kannste schauen wir warm der i7 4770k wurde mit 4,5ghz.

Intel könnte schon, wenn sie wollten, da bin ich mir ziemlich sicher.

Das mit der Garantie war allgemein gesehen, man weiß ja nie wer wie viele Ahnung hat und hier lesen ja auch andere mit, somit nicht persönlich nehmen.

 

MfG.

 

Pb

 

P.s. Schön das du dann mit der Hydrokühlung zufrieden bist. :):

Link to comment
Share on other sites

@Crash-Over

Purchase-A-Plan ist was komplett anderes als vor selektierten chip zu bekommen.

Du kaufst ein normales -K CPU. Wenn du diese extra Garantie kaufst, kannst du dein defekten CPU ohne wenn und aber einmal tauschen.

Übrigens dieser Link bei CaseKing ist auch sehr interresant. Der Preis ist ziemlich hoch, "der8auer" bzw der Roman verkauft seine Sachen immer so teuerer, er verkauft sogar so ein Tool zum köpfen für stolze 70€. Er spricht in diese Preissegment nicht die Leute an, die ihre CPUs mit AIO kühlen wie wir. Sondern die extreme Overclocker die mit flüssigem Stickstoff arbeiten. Da ist alles TEUERER.

Für ein vorselektierten CHIP doppelte Preis auszugeben ist meiner Meinung nach auch ganz einfach rausgeschmissenes Geld.

NVIDIA hat es mit sein FOUNDERS EDITION so gemacht. EVGA macht es so mit sein KINGPIN Edition. Die haben eine ASIC-WERT von über 90% immer. Aber die Karten werden trotzdem heißer als die Custom Kühllösungen. WTF! Aber der Preis ist fast gleich. Naja wenn man EK Wakü installiert, hat man dann auch 400€ weniger in der Tasche.

Wenn man soviel Geld ausgibt, dann geht man in die Extreme. Das muss nicht sein

Link to comment
Share on other sites

Hallo ich bekomme auch ohne Purchase A Plan ohne wenn und aber durch , ist aber allgemein und das immer über dem Händler

 

Ich bin in dieser Szene selbst unterwegs und weiss besser was da abgeht als du. Da arbeiten wir nicht mit adaptive Spannungswerte . Mein Gaming rechner ist über eine Costum water Kühlung verbaut und we`s wird mit LN 2 gekühlt prozzis und Grafikkarten.

 

Es sind nicht für Extreme Overclocker das teil gedacht intergesagt für leute wo kein bock haben sich die finger oder den cpu kaputt zu machen ich sag nur soviel Schraubstock oder Rasierklinge

 

Jetzt verwechselst du selbst was.Die FE ist eine normale version und haben bei circa 70% ein asic wert .Bezüglich Kingpin ist auch eine Costum lösung mit den (Classiefied ACX 2.0 Kühler) von evga verbaut und haben eine asic wert von 80%-90% (das sind aber vorselektierten chip)Nur was bringt die Luftkühler dadrauf wasser kühler gehört dadrauf und keine Karte besitzt über 90 % iist mir bis heute keine untergekommen

Link to comment
Share on other sites

Ob du es bekommst ist ein andere Thema. Wir reden nur von Purchase Plan.

Sonst ist natürlich 24-monatigen gesetzlichen Gewährleistung (keine Garantie) immer da.

Und wenn du mit LN2 Mode alles laufen lässt und kühlst was LN2 eigentlich flüssige Stickstoff bedeutet, bist du ja extreme Overclocker. :o: Oder sehe ich das falsch. Aber LN2 modus kann man ruhig mit EKWB laufen lassen. Sie haben sehr gute Kühleigenschaften.

Ich verwechsle nicht, ich weiss es dass bei FE die ASIC Werte immer über 90% sind wegen der Effizienz dieser Karte. Ich hatte 3 Stück in mein Händen. Alle waren über 90%. Oder hatte ich Glück??

ASIC.JPG.6ed0e2745a9f5d3adacf8e2f2ebd8bb8.JPG

Link to comment
Share on other sites

Man bekommt es auch als normalo aber egal

 

Die ist nicht nur deswegen zu teuer die FE wegem asic haben andere faktoren ne rolle

meine sample wo ich hatte waren bei 70% gewesen

Und die asic qualität sagt nichts zu der effiziens aus

Ja könnte man sagen.

Link to comment
Share on other sites

  • Corsair Employees
Ich bin am überlegen, ob wir nicht einen kleinen Post für die Übertaktung der 6600k und 6700k CPUs machen sollten. Ist sicherlich interessanter für jeden ein wenig die Grenzen der CPUs herauszubekommen als sich auf wilde Übertaktungsmechanismen des Boardes verlassen zu müssen. Crash, lass doch da mal was machen! :)
Link to comment
Share on other sites

Ich bin am überlegen, ob wir nicht einen kleinen Post für die Übertaktung der 6600k und 6700k CPUs machen sollten. Ist sicherlich interessanter für jeden ein wenig die Grenzen der CPUs herauszubekommen als sich auf wilde Übertaktungsmechanismen des Boardes verlassen zu müssen. Crash, lass doch da mal was machen! :)

 

DAS finde ich eine sehr gute IDEE. Hier auch ein paar Infos: http://www.hardwareluxx.de/index.php/artikel/hardware/prozessoren/36445-skylake-im-overclocking-check.html Da geht's auch um Undervolting usw. Ich fande es sehr hilfreich.

Intel XTU ist auch sehr sinnvoll beim benchmarken. Da kann man ähnliche Systeme mit Temps und Clocks online vergleichen. Da kann man fürs OC auch Intel XTU Profile runterladen.

 

Wer nicht weiß, wie hoch die Temps bei seiner CPU sein soll, hier ist ein Temperatur Overview für Intel CPUs in English

 

Preface

 

Whether you overclock or not, the topic of processor temperatures can be very confusing. The purpose of this Guide is to provide an understanding of standards, specifications, thermal relationships and test methods so that temperatures can be uniformly tested and compared. This Guide supports Core i and Core 2 desktop processors running Windows Operating Systems.

 

 

Sections

 

1 - Introduction

2 - Ambient Temperature

3 - CPU Temperature

4 - Package Temperature

5 - Core Temperature

6 - Throttle Temperature

7 - Relative Temperatures

8 - Power and Temperature

9 - Overclocking and Voltage

10 - The TIM Problem

11 - Thermal Testing Tools

12 - Thermal Testing Basics

13 - Thermal Testing @ 100% Workload

14 - Thermal Testing @ Idle

15 - Improving Temperatures

16 - Summary

17 - References

 

 

Section 1 - Introduction

 

Intel desktop processors have a temperature for each Core, plus a temperature for the entire CPU, so a Quad Core has five temperatures. Heat originates at the transistor junctions within each Core where sensors measure Core temperatures. Depending on processor architecture, one of two different methods are used to measure CPU temperature.

 

Intel's Thermal Specification is "Tcase", which is CPU temperature, not Core temperature. Core temperature is 5C higher than CPU temperature due to differences in sensor proximity to the heat sources. For example, Tcase for the i5 4690K is 72C. Tcase + 5 makes the corresponding Core temperature 77C.

 

The relationship between Core temperature and CPU temperature is not in the Thermal Specifications; it's only found in a few engineering documents. In order to get a clear perspective of processor temperatures, it's important to understand the terminology and specifications.

 

Here’s a list of processors referenced according to microarchitecture:

 

6th Generation Core i, 14 nanometer

5th Generation Core i, 14 nanometer

4th Generation Core i, 22 nanometer

3rd Generation Core i, 22 nanometer

2nd Generation Core i, 32 nanometer

Previous Generation Core i, 32 nanometer

Previous Generation Core i, 45 nanometer

Legacy Core 2, 45 nanometer

Legacy Core 2, 65 nanometer

 

Use CPU-Z to identify your processor, then look up the specifications at Intel Product Information:

 

• CPU-Z - http://www.cpuid.com/softwares/cpu-z.html

• Intel Product Information - http://ark.intel.com

 

 

Section 2 - Ambient Temperature

 

Also called "room" temperature, this is the temperature measured at your computer's air intake. Standard Ambient temperature is 22C, which is normal room temperature. Ambient temperature is a reference value for Intel’s Thermal Specifications. Knowing your Ambient temperature is important because Ambient directly affects all computer temperatures. Use a trusted analog, digital or IR thermometer to measure Ambient temperature.

 

Here's the temperature conversions and a short scale:

 

Cx9/5+32=F ... or ... F-32/9x5=C ... or a change of 1C = a change of 1.8F

 

30.0C = 86.0F Hot

29.0C = 84.2F

28.0C = 82.4F

27.0C = 80.6F

26.0C = 78.8F Warm

25.0C = 77.0F

24.0C = 75.2F

23.0C = 73.4F

22.0C = 71.6F Norm ... or ... 22.2C = 72.0F

21.0C = 69.8F

20.0C = 68.0F

19.0C = 66.2F

18.0C = 64.4F Cool

 

When you power up your rig from a cold start, all components are at Ambient, so temperatures can only go up. With conventional air or liquid cooling, no temperatures can be less than or equal to Ambient.

 

As Ambient temperature increases, thermal headroom and overclocking potential decreases.

 

 

Section 3 - CPU Temperature

 

Also called "Tcase", this is the temperature shown in Intel's Thermal Specification. It's measured on the surface of the Integrated Heat Spreader (IHS) under tightly controlled laboratory conditions. For testing only, a groove is cut into the surface of the IHS where a "thermocouple" is embedded at the center, which accurately measures the temperature for the entire CPU. The stock cooler is then installed and the processor is tested at a steady 100% workload. One of two different methods are used to display “CPU” temperature in BIOS and in monitoring utilities.

 

Method 1: Legacy Core 2 (Socket 775) and Previous Generation Core i (Socket 1366) use a single Analog Thermal Diode centered under the Cores to substitute for a laboratory thermocouple. The Analog value is converted to Digital (A to D) by the motherboard's Super I/O (Input / Output) chip, then is calibrated to look-up tables coded into BIOS. Accuracy can vary greatly with BIOS updates. The monitoring utilities provided by motherboard manufacturers on the Driver DVD displays “CPU” temperature in Windows. For these processors, BIOS or CPU temperature may not be accurate.

 

Method 2: Previous Generation Core i and newer processors (Socket 115x and Socket 2011) no longer use an Analog Thermal Diode, but instead use the hottest Core as CPU temperature which is displayed in BIOS, and is defined as “Package” temperature (see Section 4). The monitoring utilities provided by motherboard manufacturers on the Driver DVD displays “CPU” temperature in Windows. For these processors, CPU temperature is the hottest Core, or Package temperature.

 

Regardless of the method used, CPU temperature in BIOS is higher than in Windows at idle, because BIOS boots the processor without power saving features to ensure that it will initialize under any conditions.

 

 

Section 4 - Package Temperature

 

Applies to: Previous Generation Core i and newer processors (Socket 115x and Socket 2011).

 

Package temperature is the hottest Core.

 

Package temperature is shown in a few software utilities such as Hardware Monitor - http://www.cpuid.com/softwares/hwmonitor.html - It can be affected by Intel's on-Die Integrated Graphics Processor Unit (IGPU).

 

 

Section 5 - Core Temperature

 

Also called "Tjunction", this is the temperature measured directly on the hot spots at the transistor junctions within each Core by individual Digital Thermal Sensors (DTS). Although sensors are factory calibrated by Intel, deviations between the highest and lowest Cores may be 10C. Sensors are more accurate at high temperatures to protect against thermal damage, so idle temperatures may not be accurate.

 

There's a 5C thermal gradient or "offset" between Core temperature and CPU temperature. This is shown on Figure 5 in the following Intel document - http://arxiv.org/ftp/arxiv/papers/0709/0709.1861.pdf

 

At Default / Auto BIOS settings (stock clock and Vcore) with 100% workload, Core temperature is 5C higher than the Tcase specification - http://ark.intel.com/ This means that whatever the Tcase specification is for your processor, add 5C to get the corresponding value for Core temperature.

 

Core temperature is the standard for thermal measurement.

 

Core temperatures respond instantly to changes in load.

 

Here's the normal operating range for Core temperature:

 

80C Hot (100% Load)

75C Warm

70C Warm (Heavy Load)

60C Norm

50C Norm (Medium Load)

40C Norm

30C Cool (Idle)

25C Cool

 

Core temperatures in the mid 70's are safe.

 

Your highest temperatures will occur when running test utilities. Temperatures are typically lower during real-world everyday workloads such as processor intensive applications or gaming.

 

Here’s a list of environment and hardware variables that affect Core temperature:

 

Ambient temperature

CPU cooler

Thermal Interface Material

Core voltage

Core speed

Memory

Computer location

Case design

Fans & ventilation

Cable management

GPU cooler

SLI / CrossFire

 

For more information see Section 15 - Improving Temperatures.

 

 

Section 6 - Throttle Temperature

 

Also called "Tj Max" (Tjunction Max), this is the Thermal Specification that defines the Core temperature at which the processor will Throttle (reduce clock speed) to protect against thermal damage. Although Intel processors are capable of operating above 90C, we also know that excessive heat kills electronics.

 

Sustained Core temperature greater than 80C is too hot for ultimate stability, performance and longevity.

 

 

Section 7 - Relative Temperatures

 

The relationships between CPU temperatures, Core temperatures and Throttle temperatures are shown below for several popular Quad Core processors, including load and idle Thermal Design Power (TDP). All values are based on Intel documentation.

 

-> Core i

 

6th Generation 14 nanometer: i7 6700K / i5 6600K (TDP 91W / Idle 2W)

 

Tcase (CPU temp) = 64C

Tjunction (Core temp) = 69C

Tj Max (Throttle temp) = 100C

 

5th Generation 14 nanometer: i7 5775C / i5 5675C (TDP 65W / Idle 2W)

 

Tcase (CPU temp) = 71C

Tjunction (Core temp) = 76C

Tj Max (Throttle temp) = 96C

 

4th Generation 22 nanometer: i7 4790K (TDP 88W / Idle 2W)

 

Tcase (CPU temp) = 74C

Tjunction (Core temp) = 79C

Tj Max (Throttle temp) = 100C

 

4th Generation 22 nanometer: i5 4690K (TDP 88W / Idle 2W)

4th Generation 22 nanometer: i7 4770K / i5 4670K (TDP 84W / Idle 2W)

 

Tcase (CPU temp) = 72C

Tjunction (Core temp) = 77C

Tj Max (Throttle temp) = 100C

 

3rd Generation 22 nanometer: i7 3770K / i5 3570K (TDP 77W / Idle 6W)

 

Tcase (CPU temp) = 67C

Tjunction (Core temp) = 72C

Tj Max (Throttle temp) = 105C

 

2nd Generation 32 nanometer: i7 2600K / i5 2500K (TDP 95W / Idle 8W)

 

Tcase (CPU temp) = 72C

Tjunction (Core temp) = 77C

Tj Max (Throttle temp) = 98C

 

Previous Generation 45 nanometer: i7 860 / i5 750 (TDP 95W / Idle 12W)

 

Tcase (CPU temp) = 72C

Tjunction (Core temp) = 77C

Tj Max (Throttle temp) = 100C

 

Previous Generation 45 nanometer: i7 920 D0 (TDP 130W / Idle 12W)

 

Tcase (CPU temp) = 67C

Tjunction (Core temp) = 72C

Tj Max (Throttle temp) = 100C

 

-> Core 2

 

Legacy 45 nanometer: Q9650 E0 (TDP 95W / Idle 16W)

 

Tcase (CPU temp) = 71C

Tjunction (Core temp) = 76C

Tj Max (Throttle temp) = 100C

 

Legacy 65 nanometer: Q6600 G0 (TDP 95W / Idle 24W)

 

Tcase (CPU temp) = 71C

Tjunction (Core temp) = 76C

Tj Max (Throttle temp) = 100C

 

 

Section 8 - Power and Temperature

 

The previous Sections have explained Intel’s Specifications, and how temperatures are measured and relate to one another. This Section will explain why Thermal Design Power (TDP), Tcase and Tj Max Specifications sometimes seem to conflict with recommended real-world Core temperatures.

 

Although Intel measures Tcase on the surface of the Integrated Heat Spreader (IHS), they also calculate the value based on their reference design stock coolers. There are several cooler models with different Thermal Design Power (TDP), which is expressed in Watts.

 

Certain TDP coolers are packaged with different TDP processors. For example, several Generations of Quad Core processors were packaged with a universal 95 Watt TDP cooler. When this 95 Watt cooler was packaged with the 95 Watt i7 2600K, Tcase was calculated and measured at 72C. When the same 95 Watt cooler was packaged with the 77 Watt i7 3770K, Tcase was calculated and measured at only 67C (shown above in Section 7). This is the primary reason why there’s so much variation in Tcase specifications.

 

The i7 6700K and i5 6600K don’t include a stock cooler. Tcase is instead based on Intel’s new cooler which is sold separately: Intel’s Skylake Cooler - http://vr-zone.com/articles/this-is-what-intels-first-c... - Unlike the 95 Watt cooler packaged with earlier Quad Core processors, Intel’s new cooler is 130 Watts for the 91 Watt 6700K and 6600K, so Tcase was calculated and measured at a very low value of 64C (shown above in Section 7).

 

Additionally, processors with Hyperthreading run hotter than their counterparts without Hyperthreading, even though they may have the same Tcase and TDP Specifications. Overclocked processors using higher Core voltages can run up to 50% over TDP. As Core voltage (Vcore) is increased to maintain overclock stability, power (Watts) also increases, which increases Core temperatures. This is why high TDP air or liquid cooling is critical to keep Core temperatures under 80C.

 

When sustained Core temperatures exceed 80C, some processors may become unstable, which can cause frame stuttering during gaming or rendering. Even though Tj Max (Throttle temp) may be 100C for your CPU variant, it’s highly recommended that you avoid running your processor at Core temperatures that begin to approach Throttle temperature due to “Electromigration”, which is explained in Section 9.

 

Core i 6th Generation processors have features such as Configurable TDP (cTDP) and Scenario Design Power (SDP) which may invoke throttling as low as 80C. See Sections 5.1.4 and 5.1.7 under “Thermal Management” in the following document: 6th Generation Intel Processor Datasheet - http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf

 

Intel’s silicon fabrication has been very consistent for the past decade across dozens of variants. Processors with low Tcase specifications are just as thermally capable as the 88 Watt 4th Generation i7 4790K with a Tcase of 74C, which again is CPU temperature, not Core temperature; (Tcase + 5 = Core temperature).

 

So regardless of your processor’s microarchitecture, Tcase and Tj Max specifications, TDP value, BIOS settings, overclock, hardware configuration, CPU cooler, Ambient temperature, app / game / stress test software workloads or any other variables, here's the bottom line:

 

Core temperatures in the mid 70’s are safe. Sustained Core temperature greater than 80C is too hot for ultimate stability, performance and longevity.

 

 

Section 9 - Overclocking and Voltage

 

Overclocking should not be attempted with Core voltage (Vcore) settings in “Auto” because BIOS will apply significantly more voltage than is necessary to maintain stability. Voltage translates into Power (Watts), which is dissipated as heat.

 

Overclocked processors can run up to 50% over TDP even when using manual Vcore settings, so high-end air or liquid cooling is critical. Every processor is unique in overclocking potential, voltage tolerance and thermal behavior.

 

Excessive Vcore and temperatures will result in accelerated "Electromigration" - https://www.google.com/?gws_rd=ssl#q=Electromigration - which prematurely erodes the traces and junctions within the processor's layers and nano-circuits. This will eventually result in blue-screen crashes, which will become increasingly frequent over time.

 

CPU's become more susceptible to Electromigration with each Die-shrink. However, Intel has improved the voltage tolerance on their 14 nanometer architecture.

 

Here’s a list of the maximum recommended Vcore settings:

 

-> Core i

 

6th Generation 14 nanometer ... 1.35 Vcore

5th Generation 14 nanometer ... 1.35 Vcore

4th Generation 22 nanometer ... 1.30 Vcore

3rd Generation 22 nanometer ... 1.30 Vcore

2nd Generation 32 nanometer ... 1.35 Vcore

Previous Generation 32 nanometer ... 1.35 Vcore

Previous Generation 45 nanometer ... 1.40 Vcore

 

-> Core 2

 

Legacy 45 nanometer ... 1.40 Vcore

Legacy 65 nanometer ... 1.50 Vcore

 

When tweaking your processor near it's highest overclock, keep in mind that for an increase of 100 MHz, a corresponding increase of approximately 40 to 50 millivolts (0.040 to 0.050) is required.

 

Remember to keep overclocking in perspective. For example, the difference between 4.4 GHz and 4.5 Ghz is less than 2.3%, which simply isn’t worth pushing your processor beyond recommended Core voltage and Core temperature limits.

 

 

Section 10 - The TIM Problem

 

Core i 3rd through 6th Generation processors are very sensitive to small increases in voltage and frequency. When overclocked, temperatures might exceed 80C, so high-end air or liquid cooling is critical. 3rd through 6th Generation processors are more difficult to cool than earlier processors for three reasons:

 

(1) The 3rd and 4th Generation 22 nanometer Die, and the 5th and 6th Generation 14 nanometer Die have significantly less surface area in contact with the underside of the Integrated Heat Spreader (IHS), than the larger 2nd Generation 32 nanometer Die.

 

(2) 3rd through 6th Generation processors have more transistors packed into a smaller Die than 2nd Generation processors.

 

(3) 3rd through 6th Generation processors use Thermal Interface Material (TIM) between the top of the Die and the underside of the IHS. Solder, which has superior thermal transfer characteristics, was instead used in 2nd Generation and earlier processors, and is used in Intel's "High End Desktop Processors" - http://ark.intel.com/products/family/79318/Intel-High-End-Desktop-Processors#@Desktop

http://i1275.photobucket.com/albums/y446/CompuTronix52/Package_zps43993989.jpg

(Illustration from Intel Desktop 4th Gen Intel® Core™ Processors Datasheet, Vol. 1, Figure 24).

 

Since the bonding material which seals the perimeter of the IHS to the Substrate is slightly too thick, this tends to increase the space between the underside of the IHS and the Die, which can cause the TIM to compress unevenly. The effect of this manufacturing procedure is that many processors show a wide deviation between Core temperatures, or one Core which runs much hotter than it's neighbors.

 

This has encouraged some overclockers to "de-lid" or remove their processor's IHS, which basically involves thoroughly removing the bonding material, replacing only the TIM and then restoring the IHS. Typical results are significantly lower Core temperatures and less deviation between Cores. Here's an excellent YouTube - [ame]

[/ame] - that shows before, how-to, and after. Beware that de-lidding will void your warranty, and you can easily damage or destroy your processor.

 

Intel has addressed these thermal problems in their Haswell refresh. The Devil's Canyon processors have an improved IHS alloy and a new Polymer TIM. Although not as thermally efficient as solder, temperatures have been improved by several degrees.

 

Regardless, 4th Generation processors differ from their 3rd Generation counterparts in that they have a Fully Integrated Voltage Regulator (FIVR) on the Die, instead of on the motherboard, which increases their Thermal Design Power (TDP). Also, due to a 4.0 GHz clock speed, 4.4 GHz Turbo and increased Vcore, the 4th Generation 88 Watt Devil's Canyon i7 4790K runs hotter at 100% workload than any of it’s predecessors.

 

Note: 5th Generation 14 nanometer Broadwell processors also have a FIVR on the Die, but the TDP is much lower at only 65 Watts. 6th Generation 14 nanometer Skylake processors do not have Voltage Regulators on the Die. Even though TDP is 91 Watts, thermal behavior is similar to 3rd Generation Ivy Bridge 77 Watt processors.

 

 

Section 11 - Thermal Testing Tools

 

In order to properly test your temperatures, you'll need:

 

-> A trusted analog, digital or IR thermometer to measure Ambient temperature.

 

-> The following freeware utilities downloaded and installed -

 

• Core Temp - http://www.alcpu.com/CoreTemp

• CPU-Z - http://www.cpuid.com/softwares/cpu-z.html

• Prime95 v26.6 - http://windows-downloads-center.*************/2011/04/prime95-266.html

 

-> Optional; Install Real Temp (developed for Intel processors) to test your Core temperature sensors or monitor your temperatures - http://www.techpowerup.com/downloads/2089/real-temp-3-7...

-> Optional; Install SpeedFan if you’d like to use the “Charts” to see your thermal signatures - http://www.almico.com/sfdownload.php

 

 

Section 12 - Thermal Testing Basics

 

We all remember science class where one of the guiding principles for conducting a controlled experiment, is that it's critical to follow the same procedure every time. This minimizes variables so results will be consistent and repeatable.

 

Since everyone tests their rigs with different hardware using X stress software at Y Ambient temperatures with Z measuring utilities resulting in CPU or Package or Core temperatures, it's impossible to compare apples to apples. This is why processor temperatures are so confusing.

 

There are only three relevant values; Ambient temperature, Core temperature at steady-state 100% workload, and Core temperature at dead idle. Applications, rendering, encoding and gaming are partial workloads with fluctuating temperatures which aren’t suitable for thermal testing or accurate temperature comparisons.

 

Sections 13 and 14 will explain how to properly test your rig at load and idle using standardized methods which minimize hardware, software and environmental variables. Follow the "Setup" in both Sections to replicate Intel's test conditions. Each 10 minute test will establish a valid thermal baseline.

 

 

Section 13 - Thermal Testing @ 100% Workload

 

Prime95 Version 26.6 Small FFT's is the standard for CPU thermal testing, because it's a steady-state 100% workload which runs Core 2 processors and Core i variants with Hyperthreading within 3% TDP at stock settings. This is the test that Real Temp uses to test sensors.

 

Core i 2nd through 6th Generation CPU's have AVX (Advanced Vector Extension) instruction sets. Recent versions of Prime95 such as 28.9 run AVX code on the Floating Point Unit (FPU) math coprocessor, which produces unrealistically high temperatures. The FPU test in the utility AIDA64 shows similar results.

 

Prime95 v26.6 produces temperatures on 3rd through 6th Generation processors more consistent with 2nd Generation, which also have AVX instructions, but do not suffer from thermal extremes due to having a soldered Integrated Heat Spreader and a significantly larger Die.

 

Note: Keep in mind that we're thermal testing only. Stability testing is not within the scope of this Guide, which assumes your rig is stable. If you're overclocked, then a combination of stress tests, apps or games must be run to verify CPU stability.

 

If you’re overclocked and run AVX apps, you may need to reduce Vcore and clock speed and / or upgrade your cooling so that Core temperatures don’t exceed 80C. Asus RealBench runs a realistic AVX workload within 3% TDP at stock settings, however, it’s a cyclic workload for stability testing, which isn’t suitable for CPU thermal testing.

 

• Asus RealBench - http://rog.asus.com/15852014/overclocking/realbench-v2-4-launched-with-x99-support/

 

Prime95's default test, Blend, is also a cyclic workload for testing memory stability, and Large FFT's combines CPU and memory tests. As such, Blend and Large FFT's both have cyclic workloads which aren’t suitable for CPU thermal testing.

 

Other stability tests such as Linpack and Intel Burn Test have cycles that peak at 110% workload, which again aren’t suitable for CPU thermal testing. The test utility OCCT runs elements of Linpack and Prime95, but will terminate the CPU tests at 85C.

 

The "Charts" in SpeedFan span 13 minutes, and show how each test creates different thermal signatures.

http://i1275.photobucket.com/albums/y446/CompuTronix52/SpeedFanTempGuideGraph_zpsd98effba.jpg

Shown above from left to right: Small FFT's, Blend, Linpack and Intel Burn Test.

 

Note the steady-state thermal signatures of Small FFT's, which allows accurate measurements of Core temperatures. A steady-state 100% workload is critical for thermal testing.

http://i1275.photobucket.com/albums/y446/CompuTronix52/SmallFFTsIntelETUAIDA64_zps2b0c9ff0.jpg

Shown above from left to right: Small FFT's, Intel Extreme Tuning Utility CPU Test, and AIDA64 CPU Test.

 

Intel Extreme Tuning Utility is also a cyclic workload. Although AIDA64's CPU test is steady-state, the workload is well below TDP, which is insufficient for thermal testing. All other AIDA 64 CPU test combinations are cyclic workloads, which again aren't suitable for thermal testing.

 

Setup:

 

Testing should be performed with your computer clear of desk enclosures or items that block airflow. Covers should be removed and all fans and circulating pump (if equipped with liquid cooling) at 100% RPM, so temperatures can be tested under ideal conditions.

 

Testing close to 22C Ambient is preferred so as to provide normal thermal headroom, but is not required. During the summer climate, if adequate A/C isn’t available, then test late at night or early in the morning when Ambient is lowest.

 

Core temperatures rise and fall with Ambient temperature. When testing above or below 22C, it’s important to "normalize" test results to establish a valid thermal baseline. This minimizes variables so results will be consistent and repeatable.

 

Summer climates create above normal Ambient which decreases overclocking headroom. For example, if your measured Ambient is 4C above Standard, subtract 4C from your reported Core temperatures to normalize your test results.

 

Winter climates create below normal Ambient which increases overclocking headroom. For example, if your measured Ambient is 4C below Standard, add 4C to your reported Core temperatures to normalize your test results.

 

Core temperatures normalized to Standard Ambient are your baseline temperatures. Establishing a baseline is important because as Ambient changes, if you maintain your hardware configuration and BIOS settings, a baseline gives you a consistent point of reference. You can repeat the test whenever you like, to see if your rig is maintaining it’s thermal performance.

 

Test:

 

Run Prime95 v26.6 Small FFT's for 10 minutes, then use your thermometer to measure Ambient. Use Core Temp to measure your Core temperatures.

 

Results:

 

If reported Core temperatures exceed 80C, you should reduce Vcore and clock speed and / or improve cooling. Core temperatures in the mid 70's are safe.

 

Intel’s specification for Digital Thermal Sensor (DTS) accuracy is +/- 5C. This means deviations between the highest and lowest Cores may be 10C, so "Average" Core temperature is often more realistic.

 

On processors with more than 2 Cores, the inner Cores run warmer because they’re insulated by the outer Cores. Here’s the physical layout in 2nd, 3rd and 4th Generation Quad Core processors, and an example of how it typically affects Core temperatures:

 

IGPU = Not in use (PCIE graphics card in use)

Core #0 = 75C (insulated by IGPU and Core #1)

Core #1 = 78C (insulated by Core #0 and #2)

Core #2 = 76C (insulated by Core #1 and #3)

Core #3 = 71C (insulated by Core #2 only)

 

Core Average = 75C.

 

Note: When viewing your temperatures in Core Temp, values which reach 81C or higher will change from black to amber, which indicates caution.

 

Normalize your results to Standard Ambient and record the values for future reference.

 

 

Section 14 - Thermal Testing @ Idle

 

Look closely at the SpeedFan Charts above, where idle temperatures are shown between load temperatures. Note that some Cores have more "range" than others and idle lower. Sensors can be tested with Real Temp. Core temperature sensors are more accurate at high temperatures for Throttle protection, so idle temperatures may not be accurate.

 

If "Speedstep", also called Enhanced Intel Speedstep Technology (EIST), is disabled in BIOS, then depending on Vcore and clock speed, idle Power can be nearly 40 Watts, which will result in high idle temperatures, especially when combined with high Ambient temperature.

 

Setup:

 

In addition to using the previous Setup in Section 13, Speedstep and all "C" States must be enabled to achieve the lowest possible idle temperatures. Also, if Windows Power Options for "Balanced" or "Power saver" is not set correctly, then Speedstep will not work ... OR ... if Windows Power Options is set to "High performance", then Speedstep will not work because Minimum processor state can‘t be set.

 

To check this, click on Control Panel, Power Options, then to the right of the selected plan, click on Change plan setting. Next click on Change advanced power settings, then drag the scroll bar down. Click on + next to Processor power management, then click on + next to Minimum processor state. This Setting must be 5%. If it's not, then correct it and click Apply.

 

Restart into BIOS and confirm that you've saved your settings to a Profile. Next, change all settings to stock (Default / Auto) including SpeedStep, all C States and Vcore, then save and exit. Reboot into Windows and confirm that your rig is at dead idle; no programs running, and off line. No Folding or SETI or "tray-trash" running in the background, and less than 3% CPU Usage under the "Performance" tab in Windows Task Manager.

 

Use CPU-Z to confirm that Core Voltage and Core Speed has decreased as follows:

 

-> Core i

 

6th Generation 14 nanometer ... about 0.8 Volts @ 800 MHz

5th Generation 14 nanometer ... about 0.8 Volts @ 800 MHz

4th Generation 22 nanometer ... about 0.8 Volts @ 800 MHz

3rd Generation 22 nanometer ... about 0.9 Volts @ 1600 MHz

2nd Generation 32 nanometer ... about 1.0 Volts @ 1600 MHz

Previous Generation 32 nanometer ... about 1.0 Volts @ 1600 MHz

Previous Generation 45 nanometer ... about 1.0 Volts @ 1600 MHz

 

-> Core 2

 

Legacy 45 nanometer ... about 1.1 Volts @ 2000 MHz

Legacy 65 nanometer ... about 1.25 Volts @ 1600 MHz

 

Use Core Temp to confirm that Power has decreased as follows:

 

-> Core i

 

6th Generation 14 nanometer ... about 2 Watts

5th Generation 14 nanometer ... about 2 Watts

4th Generation 22 nanometer ... about 2 Watts

3rd Generation 22 nanometer ... about 6 Watts

2nd Generation 32 nanometer ... about 8 Watts

Previous Generation 32 nanometer ... about 8 Watts

Previous Generation 45 nanometer ... about 12 Watts

 

Note: Idle Volts and Watts may differ depending on BIOS versions and motherboard models. Power (Watts) isn't measured on Previous Generation Core i Socket 1366 variants and Legacy Core 2 processors, but for general reference, idle power for several popular CPU's is shown in Section 7 - Relative Temperatures.

 

Test:

 

Allow your rig to "settle" for 10 minutes, then use your thermometer to measure Ambient. Use Core Temp to measure your Core temperatures.

 

Results:

 

Core i 2nd through 6th Generation processors should idle at less than 8C above Ambient. This means at 22C Standard Ambient your Cores should idle just under 30C. Certain Previous Generation Core i variants and Legacy Core 2 processors may idle several degrees higher. Better cooling and lower idle power produce lower idle temperatures.

 

Normalize your results to Standard Ambient and record the values for future reference. When finished testing, restore your system to it's previous configuration.

 

 

Section 15 - Improving Temperatures

 

Whether your computer is a stock workstation or an overclocked gaming rig, achieving the lowest possible temperatures always depends on components, configuration and airflow. Here's a few thoughts:

 

• Intel coolers are barely adequate at stock. If you want to overclock then upgrade your cooler.

• Use Manual Vcore settings. Auto applies excess voltage which means more power and heat.

• Memory overclock and XMP Profiles can cause Core i processors to run a few degrees hotter.

• Axial flow graphics cards recirculate heat. Linear flow cards exhaust heat from the case.

 

Examples:

 

Axial - http://www.newegg.com/Product/Product.aspx?Item=N82E16814487248&nm_mc=AFC-C8Junction&cm_mmc=AFC-C8Junction-Skimlinks-_-na-_-na-_-na&AID=12087162&PID=3899435&SID=skim1402X558040X9b9c614b21b57a7f1d695ce3ac684d43&utm_medium=affiliates&utm_source=afc-Skimlinks

Linear - http://www.newegg.com/Product/Product.aspx?Item=N82E16814487247&nm_mc=AFC-C8Junction&cm_mmc=AFC-C8Junction-Skimlinks-_-na-_-na-_-na&AID=12087162&PID=3899435&SID=skim1402X558040X5856cc28139708355292edcdcec0477b&utm_medium=affiliates&utm_source=afc-Skimlinks

 

• Axial cards work well with a liquid cooled CPU. Linear cards work well with an air cooled CPU.

• SLI / CrossFire works best with Linear cards. Axial cards dump massive heat in your case.

• A hot case stresses hard drives, memory, chipsets, voltage regulators and power supply.

• High performance computers need unrestricted airflow in and out, so location is critical.

• Load temperatures that drop over a degree or two with case covers off means poor airflow.

• Good cable management creates good airflow. Use zip-ties, patience and attention to detail.

• Quality fans are important, but if you want a quiet computer then consider a fan controller.

• If your case just doesn't breathe well, then perhaps it's time to upgrade to one that does.

• If your rig runs 24/7, then hard drive and fan bearings are wearing, and dust is accumulating.

• Clean the dust out of your rig. Perform regular Planned Maintenance Inspections (PM's).

• Replace your TIM. Most Thermal Interface Material typically begins to fail after 2 years.

 

Thermal Interface Material (TIM):

 

Thermal Paste Comparison, Part One: Applying Grease And More - http://www.tomshardware.com/reviews/thermal-paste-heat-sink-heat-spreader,3600.html?_ga=1.57669994.1578804189.1468970488

Thermal Paste Comparison, Part Two: 39 Products Get Tested - http://www.tomshardware.com/reviews/thermal-paste-performance-benchmark,3616.html?_ga=1.266845774.1578804189.1468970488

 

The proper installation of Intel's stock cooler:

 

Intel Stock Cooler Installation Guide - http://www.tomshardware.com/forum/338655-28-intel-stock-cooler-installation-guide?_ga=1.266845774.1578804189.1468970488

 

Choosing an aftermarket cooler:

 

Air Cooling vs Water Cooling : Things You Need To Know - http://www.tomshardware.com/forum/id-2196038/air-cooling-water-cooling-things.html?_ga=1.266845774.1578804189.1468970488

Alternatives to the Hyper 212+/Evo for budget cooling - http://www.tomshardware.com/forum/id-2705157/alternatives-hyper-212-evo-budget-cooling.html?_ga=1.105747907.1578804189.1468970488

 

 

Section 16 - Summary

 

• Standard Ambient temperature is 22C.

• Ambient affects all computer temperatures.

• No temperatures can be less than or equal to Ambient.

• As Ambient increases, thermal headroom decreases.

• BIOS or CPU temperature may not be accurate.

• Package temperature is the hottest Core.

• Core temperature is the standard for thermal measurement.

• Core temperatures respond instantly to changes in load.

• 80C sustained Core temperature is too hot.

• Core temperatures in the mid 70's are safe.

• Excessive Vcore and temperatures accelerate electromigration.

• Prime95 v26.6 Small FFT's is the standard for thermal testing.

• Deviations between highest and lowest Cores may be 10C.

• Core temperature sensors are more accurate at high temperatures.

• Idle temperatures may not be accurate.

• Sensors can be tested with Real Temp.

 

Section 17 - References

http://www.tomshardware.co.uk/forum/id-1800828/intel-temperature-guide.html

Link to comment
Share on other sites

Archived

This topic is now archived and is closed to further replies.

×
×
  • Create New...